Pages

Sunday, December 19, 2021

About Touch Screen Technology

Traditional input devices for computer systems include keyboards and mice. In recent years, touchscreen technology has become widely used as a way to interact with computer systems, particular for mobile devices.

touchscreen is an electronic visual display that a user can control by touching the screen with one or more fingers. A touchscreen allows for a much more direct interaction with what is displayed compared to a device like a mouse. Touchscreens have become very common on tablet computers, smart phones and other mobile devices. Increasingly, regular laptop and desktop computers use touchscreen displays so users can use both touch as well as more traditional ways of input.

 

Touch screen technology: as per Wikipedia

A touchscreen or touch screen is the assembly of both an input ('touch panel') and output ('display') device. The touch panel is normally layered on the top of an electronic visual display of an information processing system. The display is often an LCD AMOLED or OLED display while the system is usually a laptop, tablet, or smartphone. A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus or one or more fingers. Some touchscreens use ordinary or specially coated gloves to work while others may only work using a special stylus or pen. The user can use the touchscreen to react to what is displayed and, if the software allows, to control how it is displayed; for example, zooming to increase the text size.

The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus, which is optional for most modern touchscreens).

Touchscreens are common in devices such as game consoles, personal computers, electronic voting machines, and point-of-sale (POS) systems. They can also be attached to computers or, as terminals, to networks. They play a prominent role in the design of digital appliances such as personal digital assistants (PDAs) and some e-readers. Touchscreens are also important in educational settings such as classrooms or on college campuses.

The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field, heavy industry, automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display's content.

Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators, and not by display, chip, or motherboard manufacturers. Display manufacturers and chip manufacturers have acknowledged the trend toward acceptance of touchscreens as a user interface component and have begun to integrate touchscreens into the fundamental design of their products. 

Development

The development of multi-touch screens facilitated the tracking of more than one finger on the screen; thus, operations that require more than one finger are possible. These devices also allow multiple users to interact with the touchscreen simultaneously.

With the growing use of touchscreens, the cost of touchscreen technology is routinely absorbed into the products that incorporate it and is nearly eliminated. Touchscreen technology has demonstrated reliability and is found in airplanes, automobiles, gaming consoles, machine control systems, appliances, and handheld display devices including cellphones; the touchscreen market for mobile devices was projected to produce US$5 billion by 2009.

The ability to accurately point on the screen itself is also advancing with the emerging graphics tablet-screen hybrids. Polyvinylidene fluoride (PVFD) plays a major role in this innovation due its high piezoelectric properties, which allow the tablet to sense pressure, making such things as digital painting behave more like paper and pencil.

 

TapSense, announced in October 2011, allows touchscreens to distinguish what part of the hand was used for input, such as the fingertip, knuckle and fingernail. This could be used in a variety of ways, for example, to copy and paste, to capitalize letters, to activate different drawing modes, etc.

A real practical integration between television-images and the functions of a normal modern PC could be an innovation in the near future: for example "all-live-information" on the internet about a film or the actors on video, a list of other music during a normal video clip of a song or news about a person.

Touchscreen Accuracy

For touchscreens to be effective input devices, users must be able to accurately select targets and avoid accidental selection of adjacent targets. The design of touchscreen interfaces should reflect technical capabilities of the system, ergonomics, cognitive psychology and human physiology.

Guidelines for touchscreen designs were first developed in the 1990s, based on early research and actual use of older systems, typically using infrared grids—which were highly dependent on the size of the user's fingers. These guidelines are less relevant for the bulk of modern devices which use capacitive or resistive touch technology.

 

From the mid-2000s, makers of operating systems for smartphones have promulgated standards, but these vary between manufacturers, and allow for significant variation in size based on technology changes, so are unsuitable from a human factors perspective.

Much more important is the accuracy humans have in selecting targets with their finger or a pen stylus. The accuracy of user selection varies by position on the screen: users are most accurate at the center, less so at the left and right edges, and least accurate at the top edge and especially the bottom edge. The R95 accuracy (required radius for 95% target accuracy) varies from 7 mm (0.28 in) in the center to 12 mm (0.47 in) in the lower corners. Users are subconsciously aware of this, and take more time to select targets which are smaller or at the edges or corners of the touchscreen.

 

This user inaccuracy is a result of parallax, visual acuity and the speed of the feedback loop between the eyes and fingers. The precision of the human finger alone is much, much higher than this, so when assistive technologies are provided—such as on-screen magnifiers—users can move their finger (once in contact with the screen) with precision as small as 0.1 mm (0.004 in).

 

From <https://en.wikipedia.org/wiki/Touchscreen>

 

What is a Touch Screen Technology & Its Working

Touch screen technology is the direct manipulation type of gesture-based technology. Direct manipulation is the ability to manipulate the digital world inside a screen. A Touch screen is an electronic visual display capable of detecting and locating a touch over its display area. This is generally referred to as touching the display of the device with a finger or hand. This technology most widely used in computers, user interactive machines, smartphones, tablets, etc to replace most functions of the mouse and keyboard.

Touch screen technology has been around for a number of years but advanced touch screen technology has come on in leaps and bounds recently. Companies are including this technology in more of their products. The three most common touch screen technologies include resistive, capacitive, and SAW (surface acoustic wave). Most low-end touch screen devices contain a standard printed circuit plug-in board and are used on SPI protocol. The system has two parts, namely; hardware and software. The hardware architecture consists of a stand-alone embedded system using an 8-bit microcontroller, several types of interface, and driver circuits. The system software driver is developed using an interactive C programming language.

What is a Touch Screen Technology?

A touch screen technology is the assembly of a touch panel as well as a display device. Generally, a touch panel is covered on an electronic visual display within a processing system. Here the display is an LCD otherwise OLED whereas the system is normally like a smartphone, tablet, or laptop. A consumer can give input through simple touch gestures by moving the screen using a special stylus otherwise fingers. In some kinds of touch screens, some normal otherwise gloves are used which are coated to work properly whereas others may simply work with the help of a special pen.

The operator uses the touch screen to respond to what is displayed and if the software of the device permits to control how it can be exhibited like zooming the screen to enhance the size of the text. So touch screen allows the operator to communicate directly through the displayed information instead of using a touchpad, mouse, etc. Touch screens are used in different devices like personal computers, game consoles, EVMs, etc Touch screens are also essential in educational institutions like classrooms in the colleges.

Who Invented Touch Screen?

The first concept of a touch screen was described & published in the year 1965 by E.A. Johnson. So, the first touch screen was developed in the 1970s by CERN engineers namely Bent Stumpe 7 Frank Beck. The first touch screen device was created & used in year 1973. The first resistive touch screen was designed in 1975 by George Samuel Hurst however wasn’t launched 7 used until 1982.

How Does Touch Screen Technology Work?

Different types of touchscreen technology work in different methods. Some can detect simply one finger at a time & get very confused if you seek to push in two positions at once. Other types of screens can simply notice and differentiate above one key push at once. There are different components used in touchscreen technology which include the following.

Operation of Touch Screen Panel

A basic touch screen is having a touch sensor, a controller, and a software driver as three main components. The touch screen is needed to be combined with a display and a PC to make a touch screen system.

Touch Sensor

The sensor generally has an electrical current or signal going through it and touching the screen causes a change in the signal. This change is used to determine the location of the touch of the screen.

Controller

A controller will be connected between the touch sensor and PC. It takes information from the sensor and translates it for the understanding of PC. The controller determines what type of connection is needed.

Software Driver

It allows computers and touch screens to work together. It tells OS how to interact with the touch event information that is sent from the controller.

Modes of Touch Screen

The operation of the touch screen can be done in different ways like single tap, double-tap, touch and hold, swipe, pinch.

·         In a single tap, a single touch is used to tap on the screen to open an app otherwise choose an object.

·         In double-tap, multiple touches are used for serving different functionalities like zooming a display, choose a word or set of words.

·         The touch and hold option is mainly used to choose an object to drag it and also it gives the option to unlock the screen otherwise powering ON/OFF.

·         Swiping a finger over the screen is used to type the letters using the keyboard on the screen. It is also used to move the pages from right to left and also close unwanted apps.

·         In pinch, two fingers are used to zoom in or zoom out a display.

Transparent Touch Screen Technology

Transparent touch screens work by using two modern technologies to make a cutting-edge display that is tough to ignore. These touch screens deliver 4K images or HD based on the display size similar to a normal professional screen. The main difference between a transparent and normal touch screen is a clear screen substrate. White pixels appear completely transparent, black pixels not clear. The full variety of RGB colors has the properties of semi-transparent. Transparent touch screens are available in different types like transparent LCD screens and transparent OLED screens.

Why Some Touch Screens Work Only with a Bare Finger?

Once a bare finer is used to tap on the screen then it registers the commands. If you use a gloved finger otherwise a stylus pen then it doesn’t register the commands. So the main reason is conductive properties. There are different kinds of touchscreen technologies available in the market, but the capacitive type is more popular as compared to others because 90% of the touch screens sold and shipped worldwide are powered through capacitive technology.

These touchscreens depend on conductivity to notice touch commands. If you use a stylus or gloved finger to control them, then they won’t record the commands otherwise react to your commands.

Application – Remote Control using Touch Screen Technology

The touch screen is one of the simplest PC interfaces to use, for a larger number of applications. A touch screen is useful for easily accessing the information by simply touching the display screen. The touch screen device system is useful in ranging from industrial process control to home automation.


Touch Screen based Robotic Vehicle- Transmitter

 

From <https://www.elprocus.com/touch-screen-technology-working/>

Touch Screen Properties

The main properties of the touchscreen include the following.

·         Ball drop test

·         Clarity and Brightness

·         Mechanical and Mounting

·         4K vs Full-HD

·         HID Compatible

·         Touchpoints

·         Response Time

·         Touch Resolution

·         Raised Bezel

·         Latency / Lag / Touch Response

Advantages

The advantages of touchscreen technology include the following.

·         Easy to Clean and Maintain

·         Engaging and Interactive

·         Self-Service Feature

·         Keyboard and Mouse are not required

·         Speed and Efficiency

·         Mobility and Space

·         Durability and Resilience

·         Easy User Interface

Disadvantages

The disadvantages of touch screen technology include the following.

·         The display of the device has to be large to operate the screen properly

·         The display will get dirty

·         These are expensive as compared to normal devices

·         Indirect sunlight, it is less efficient to read the screen

·         Battery life is low due to the big bright screen and uses massive computing power

·         Accuracy & Feedback

·         Issues on On-screen Keyboard

·         Issues due to Sensitivity

·         Screen Size

·         Accidental Dialing

Applications

The applications of touchscreen technology include the following. Some of the examples of touchscreens like smartphones, a tablet or a computer & a point of sale device.

·         All-in-One computer

·         Touch screen printer

·         Ticket machine

·         Arcade game

·         Tablet

·         ATM

·         Car GPS

·         Smartphone

·         Signature pads

·         Camera

·         POS machine

·         Car stereo

·         Medical equipment

·         Cash register

·         Large interactive screen

·         Digital camcorder

·         In-flight entertainment screen

·         Laptop

·         Handheld game console

·         E-book

·         Grocery self-checkout machine

·         Kiosk

·         Gas station

·         Sewing machine

·         Fitness machine

·         Electronic whiteboard

·         Factory machine

The touch screen supported most of the computers are Acer, HP, Dell, Microsoft, Lenovo, and other PC designers. And also, some high-end Google Chromebooks use touch screens.

Thus, this is all about an overview of touchscreen technology. The main reasons to choose this technology instead of physical buttons by the manufacturers are; these are instinctive, particularly to younger generations of users. By using this technology, the devices can make smaller. The design of these devices is cheaper. In touch screens, different technologies are used to let the operator operate a screen. Some technologies use a finger whereas others use tools such as a stylus. Here is a question for you, Do touch screens use a keyboard?

From <https://www.elprocus.com/touch-screen-technology-working/>

 

Communication between humans and computer systems has come a long way from the keyboard and mouse. As more and more interaction is being done on mobile devices, touchscreen technology makes it possible to interact with a computer system using direct touch of the electronic display, eliminating the need for a bulky mouse or keyboard. Explore the definition and applications of touchscreen technology. 

 

For all discussed seminar topics list click here Index.

                                                                                                    …till next post, bye-bye and take care. 

No comments: